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The theory of optimum processes in linear systems has been rigorously
developed in recent years in the works of Pontriagin, Poltianskii and
Gamkrelidze [ 1, 2, 3].

These studies were preceded by the work of Fel’dbaum [ 4], Lerner [s5,
6] and others. Considerable contribution to this field was made by Bell-
man [ 7.8.9), the author of a fundamental paper on dynamic programming

[sl.

In this paper, one of the problems of the theory of dynamic programm-
ing is considered, namely, the problem of choosing the law of variation
of the additional external forces by means of which one can ensure real-
ization of prescribed motion in a linear nonstationary system, This
problem is considered for both continuous and impulsive systems.

1. Basic continuous systems. The equations of motion of a con-
tinuous system can be represented as follows:

n

S D=7+ 4,0 (=t m (1.1)

k==l

Here y, are generalized coordinates, x.(t) are given external forces,

g.(t) are additional external forces for which the law of variation with
respect to time must be chosen such that the prescribed motion will take
place; f ¢ (D) denote polynomials in D the coefficients of which are given
functxons of time; D = d/dt is the differential operator with respect to
time.

It is not difficult to see that the equations of motion (1.1) also
apply to systems with the presence of commonly used control forces which
are error functions (i.e. the difference between the desired and the actual
values of the controlled coordinates of a system) and their derivatives.
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The external forces necessary for this are included in the number of the
given external forces x.(t), while the forces which should be functions
of controlled coordinates and their derivatives are taken into account in
the left-hand side of equations (1.1),

The system of equations (1.1) may be presented as follows:
m

ny mgy n
bin () ¥y + bj2(2) ya -+« .o + bjn () Y =
m;—1 mn_i (1.2)
= :( YioveeesYeees Yn ,---,yn)+xj(t)+qj(t) (=1, ...om)
Here m (k= 1, ..., n) denote the order of the highest derivative of

¥, with respect to time occurring in (1.1). The functions W entering
(1 2) are linear functions of their arguments.

Assuming that the determinant
A" = [ (1) (1.3)

is not identically equal to zero we obtain from equations (1.2)

1.4

m; my—1 m, —1
yj==(Dj( Yt sevesYireees Yn o ene ,yn)—k

Bly() 'n]()
trmEO+Fa O+ ey @ 12 (D) + aa (1)) G=1,...,n)

Here ®. are the linear functions of their arguments and B, . are the
cofactors of the. elements by; in the determinant (1.3).

The system of equations (1.4) can be reduced to the Cauchy form. To
this end let us introduce a new variable z, by means of the following
relationships

. m1—1 mn~1
=Y 22=Yr -+ Z2m= Y1 41+--22r= Yn (1.5)

vhere r=my g . mg (1.6)

Let us denote linear combinations of external forces in the right-hand
sides of equations (1.4) as follows:

> BI] (t) \ 1” (t)
‘de(t) = A‘ (t) (t . + A' (l) (t)

(2) nj (1)
Qaj( ) = Aij(t) Q1(t)+ "'+ 'A']—(t)qﬂ(t)

(O'J- :cl,.. .,O’n) (1.7)

vhere
31-———m1, G2=m1+m2,...,dn=l‘ (1.8)

Equations (1.4) can now be written as follows:
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51'—22:0,.,:,57’1‘—@1(21, Zg, ,‘.,Zr)z-Xg‘(t)*{‘ch(t),...
L — On (21 Zor - vy Zr) = Xop (1) + Qo (1) (1.9)

By virtue of linearity of the functions ®.(z,, z,, ..., z.), equations
(1.9) can be represented in the following form

5+Nax =X+ Q1)  G=1....n (1.10)
k=1
In equations (1.10) the functions X (t) and Q (¢) with p # 0, (I = 1,
., n) are identically equal to zero,”

The system of scalar equations (1.10) is equivalent to a matrix equa-
tion
Zta(t)z=X(t)+ Q) (1.41)
vhere z, a{t), X(t) and Q{(¢t) are the following matrices:
z=lz], a@=Jax@)l, X@O=]X;@)], Q@)=]C;(D} (1.12)

The general solution of equation (1.11) is of the form:

= N(t, 1) 2(to) + { N (¢, X (9) + Q ()1 de (1.13)
where "
Nt =)=08()62(x) (1.14)

and 6(¢t) is the fundamental matrix for the homogeneous matrix equation
obtained from (1.11) when X(t) + Q(¢) = 0. 8~ *(¢) denotes the inverse

matrix,

The function N{(t, r) is the matrix weighting function for the system
(1.10).

Since the functions X (¢t) and Q (t) are identically equal to zero for
p#o; (I=1 ..., n), the elements of the z-matrix will be
(1.15)

t) = ENJ" (t to) Zk (to) + S 2 N”l (t 1) [X"z (T)+Q°z (T) ]d* G=1 r)

K==} ty i=1

Substituting expressions (1.7) defining X (t) and(27 (t) into (1.15)
we obtain

2 (0) = ) Nse (6 1) 2 (1) + (1.16)

k=1
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t
n n Bi(T) ,
+SZ 2 Vs 8 o) a0 F @ dT =10
to l=1 i== 1
Denoting by
li {7} je=l, vee sy ¥ ~
Wi (t, T)._ZN,‘,t(z %) A ey (z=1,.,..n) (1.17)

i=1

let us represent the general solution of (1.10) in the following form

(1.18)
r n !

zi(t) = D) Nix(t, o)z (f) + ) SW,—: @+ aEld G=1,....n
k=3 I=} i,

Let us now require that some generalized coordinates z_., ..., z
after some instant of time t,, should vary in accordance with the
following laws:

P’

zp{(t)=":oi(t) (t>1t) (i=1,...,m {1.19)

It follows from (1.18) that conditions (1.19) will be satisfied if
the additional forces ql(t) are chosen such that for t > t; the following
relationships hold:

n t
A \Woat.D@@ds=Ry(t)  (t>0)  G=t1...m (120

=1 1,
where (1.21)

r n ¢
Rm(t) = "pi(t)_ 2 Npik(t, to) Zk(to)"‘“‘ 2 ngiz (t. D)z (r)d= (i=1,...,m)
pse]

51 ,’0

The relationships (1.20) define the law, in accordance with which the
additional forces g; {(¢) (1 =1, ..., n) must vary. If the number of the
generalized coordlnates m (the law of variation of which is prescribed)
is less than the number of possible additional forces n, we shall take

9 (1) =G, ()= ... =¢u,_,, (1)=0 (1.22)

From (1.20) we have m relationships for determining m additional ex-
ternal forcfs qsi(t), qsz(t), ver, qsl(t):

Z SW’pi,“(t, 1) gs, (v) dt = Ry, (1) (t>t) (=41,...m) (1.23)

tl-lg'
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The system of integral equations (1.23) can be solved by means of a
numerical method. To this end let us divide the time interval (¢ , t)
into small intervals (ti' tz)' (tz, t3)’ (t3, tu), «... and look for
qsﬂ(t) (g =1, ..., m) 1n the form of step functions, having constant
values in each of the above intervals,

In doing so we shall obtain (from 1.23) the following system of re-
currence equations:

t

g [S Wos, (b1, %) de] au, (t0) = R, (1) (=1, m)

% [S W, (ta: %) e 4u, (t0) + (1.24)
+. ?j [S Wia, (82, %) 2] 0s, (1) = Ry (1) (i=1,...m)

éigwmmu&ﬂﬁhmmo+;§@Wzmumﬂﬁk%uo+
-{%j&ﬂmdhﬂﬂﬂ%ﬁm=dm09 (=1, m)

.................................

From (1.24) we can find in succession the following quantities:
ds, (%), qs, (1), qs, (t2), (r=1,...,m)

which are the values of the desired step functions qsp(t) =1, ..., m)
during time intervals (to, ti)’ (tl’ tz), (tz' tB)’ «+., Tespectively.
Let us now consider a case when the number of additional external
forces is less than the number of the generalized coordinates which nust
vary with respect to time in accordance with the prescribed law.

The relationships (1.23) for this case will be satisfied only at dis-
crete instants of time t = Tl’ TZ' TB' .... For stationary systems this
was shown by Lerner [6].
Thus, if there is only one additional force q_(t) and the conditions
(1.19) still must be satisfied, the relationships (1.23) at instant

t =T, will assume the form:

T].‘.

\ Wi (T1,7) 4 (2) d = Ry, (T) (i=1..

t

.., m) (1.25)
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Let us divide the interval (to, T,) into m equal or unequal sub-
intervals (to, tl), (tl, tz), (‘2' tB), cee, (t__l, T). Let us assume
that ¢_(¢) is a step function and denote its values in these intervals

by qs(to), qs(tl), N qs(tn_l), respectively,
Let us introduce the following notations:

t, 1, Ty
\Woia (11, ) dx = e, \ Wi (T, s =0, | Wiy (T, 0y de = emeo

’
t tm—1

(i=1,....m) (1.26)

,.

Now relationships (1.25) assume the form:
¢i0q, (o) + ciVqs (£y) + . .. + ™ Vg (tmey) = Rp, (T1)  (i=1,...,m) (1.27)

From the system of linear nonhomogenious algebraic equations (1.27)
we find the values of qs(to), qs(tl), cees qs(tu_l), 1.e. we find the
law of variation of additional external forces which assures that at
instant t = T, the following conditions will be satisfied

2p; (T1) = rp (T) (i=1,...,m) (1.28)

At t = T, the relationships (1.23) will assume the form:

T,
\ Wit (72,90, () de = Ry, (T) (=1, . m (1.29)
or te
Ts
S Wpie(TmT) qa(T)dtsz;(Tz) (i=1,...,m) (1.30)
Ty
where

Ty
Ry (Ta) = Ry (To) =\ Wou(Ta 9@ (s i=1,..,m)  (131)

t

The interval T,, T, will be also divided into m equal of unequal sub-
intervals (t., ), (¢ t.+z)' cen, (tZu—l’ Tz)' where

m+ 17
tm =T, (1.32)

The values of the step function qs(t) in the intervals (t., tay 1),

(tprp tas2)s «oes (typ_ 4y T,) will be denoted by q (t,), q.(t . ),

eer q (8, 1), respectively. Let us use the analogous notation

tu+ 1
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tmg1 tmtpg
S W (Tg, 1) dt = ci{™, g W (T, 1) dr = ¢tmtD), .
fm tmr
Ty
e R Wi (Tg, ) dr = ¢iom—D) (i=1,...m) (1.33)
tam—1
The relationships (1.30) will become: (1.34)

&My (Em) + ™0 (Empa) + - - -+ O DG (Bamy) = Rp," (T2) (i=1,...,m)

From the system of equations (1.34) we find the values of g (¢,),
et 1) ceey g (t 1), i.e. we find the law of variation of the
aédu:lonal external force in the interval (T1 T, ), which assures that
at instant 7, the following conditions are sausfled

2p, (Ta) = rp; (T2) (i=1,...,m) (1.35)

This process may be continued, and thus to assure that in the presence
of only one additional force g (t) the m conditions of (1.19) will ‘be
satisfied at instants t* = Ti' T , T

zpi(t)z"pi(t) (i=1,...,m)

Let us note that the values of qs(tj), generally speaking, will in-

crease as the length of the time intervals T, - T, _, is decreased.

For fixed values of T; - at which conditions (1.19) must be satisfied -
a problem may be given in terms of some extremum properties of motion
such as minimum root-mean-square deviation r_.(t) - 2z .(t), or others.
These problems will reduce to the problem of conditional extremum of
corresponding functionals, which may be determined from (1.23).

Let us make also the following observation. In equations (1.24), (1.25),
and (1.29), the functions W, ft, 1), for fixed value of time t = t, are
assumed to be known. As is seen from (1.17), in order to determine the
functions ¥. (t , t) one must know the functions N ( r), which are
elements of the matrix weighting function N(t, r) at t,ée same instant
t=tr As is known,

N (tg, 7) = Zg (v) (1.36)
where Zf(r) are solutions of the conjugate system of equations

dzZ
- E () Zs =0  (g=1,...1) (1.37)

constructed for the system of equations (1.10) and which at r = t; assume
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the following values:
Z;(ty)=1, Zy(tr)=0 (k=1,2,..,7—1,j+1,...,r) (1.38)

Thus, to make possible the determination of the functions W, (té' r),
it is necessary to solve the conjugate system of equations (1.37), sub-
ject to the conditions (1.38). From this follows the method of determina-
tion of additional external forces qs(t) by means of electronic computers.

2. Impulsive systems. For this case, equations of motion of a non-
stationary impulsive system will be represented by a system of linear
difference equations

kZ finMye =)+ q;(t)  (=1,....m) (2.1)

where T is the lead operator defined by the following relationship

Ty =yt + 1) (2.2)
and 7 1s some constant.

Equations 2.1) may be obtained from (1.1) by replaeing the diffe-
rential operator D by the lead operator T. Having carried out the trans-
formations in (1.2) to (1.9), we shall reduce the system of equations
(2.1) to the form

Tz;+ ) aj(t)ze = X;(0) + Q5 (2) (i=1...7) (2.3)

k=1
where, analogously to (1.5),
2=y Za=Ty,. sy Zm=T"""Ty,..., z.=T"™"ly, (2.4)

and the functions Xj(t) and Qj(t) are defined by the expressions (1.7)
and (1.8).

The system of scalar equations (2.3) is equivalent to the matrix
equation

Tz4a(t)z=X(t)+Q () (2.9)

where the matrices z, a(t), X(¢), and Q(t) are defined in (1.12). Solution
of the equation (2.5) is of the form:

2(t)=0()07 (¢t —9x) 2" (t — 91) +-
T
+ N 0(8)81(t— 9+ X (F— I+ jr—1) + Q(t — St + jr—1)] (2.6)
i=1
where 0(¢t) is a square matrix, the colums of which are linearly inde-
pendent solutions of the following homogeneous matrix equation
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Tz+a(t)z=0 (2.7)

The matrix 6~ 1(¢) is the inverse matrix of 0(¢) and denotes the
integral part of t/r.

In the expression (2.6) the second term becomes zero in the interval
0 < t < r so that, according to (2.6)

z(t) = 2" (t) O<t<T) (2.8)
where z*(t) 1s a given matrix defined in the interval 0 < t < r by the
law of variation of the sought matrix z(t) in this (initial) time interval.
In accordance with (2.6), the elements of the matrix z(t) will be of the

form:
,

zo(8) = D [0(8) 07 (1 — o) 2" (¢ — 9v) + (2.9)
k=1

+ 2 X 18()) 87 (¢ — 9 + jr) e [ X (£ — B+ jr— 1) +
kel je=1
’ + Qu(t— %t + jr—1)] (v=1,...,7)

Denoting the matrix weighting function by N(¢, jr)
N, ji)=0()02(t — 9+ jr) (2.10)
the solution (2.6) can be written as follows
2(8)=N(t,0)z" (t — ) +
8
FANE DX (E—+—)+Q(t—%+js—7)]  (211)
i=1

The expressions (2.9) will now assume the form:
r

z,(t) = ) Nu(t, 0) 2" (¢ — 97)+ (2.12)
r ] k=t
+ 20 X Nue(t, o) [Xa (¢ — 9t + jr—) + Qe(t — S+ jr— )] (v=1,....7)

k=]j=1

Since the functions X (¢) and Q (t) with p £ 0;(1 =1, ..., n) are
identically equal to zero, the expressions (2.12) may be rewritten as
follows:

Zy (t) = é va (t, 0) Zk. (t -—’8’!) +
k=1
n 9

+ E 2" Ny, (8, JO) [ X (8 — 91+ jr— 1) + Qo (t — B+ jr—1)] (2.13)

=] j=1 (v=1,...,r)
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Replacing X . and Qa in accordance with (1.7), let us reduce (2.13)
to the follomng

zy (t) == 2 Ny (¢, 0) 2z (t — ) 4+ (214)
k=1
n& 2 B, (t—%t+jr—n)

SRV AT .
+i2=1j2=11.2=]1‘2\ t(t ]‘C) A‘(t—-—‘ST-{“]T ) [xi(t_%t+lt_1)+
+q(t— 94 jr—1)]

(v=1,....1)
Writing
, < LBy =39t +jr—1) v=1,. r
Wvl(ta ]T):-'%Nvai(ta ]T) At — 9T+ jr—1) (l:l,...,n) (2.15)
the expressions (2.14) may be represented in the form:
2y (t) = D} Nw(t, 0)z, (t — 1) + (2.16)
n & =
+2 Zsz & )zt~ jr—1)+ g, (t—d1+jr—1)]  (=1...,7
l=] j=1

To satisfy the conditions (1.19) we shall have the following relation-
ships, analogous to (1.23):

m &
2 E}WP;‘,S;;_ (t? jt) qsﬂ- (t — 9 + f’f——'T) = R?i (t) (t>t1) (izis--w m)! (2‘17)
=1 j=1

where .
Ry, (1) = rp, (8) — D) Npx (2, 0) 2z (8 — 91) — (2.18)

k=1

n o9
'_2 Ewpil(t, ]'T)xl(t‘—%‘t_l—jtwt) (i=1,...,m)

I=1 j==1

Relationships (2.17) define the law, in accordance with which addi-
tional external forces g, (¢t) (¢ =1, ..., m) must vary in order for some
generalized coordinates 'of the system z_.{(i = 1, ..., m) after some in-
stant of time t, = j.r {t, is some multip {e of r) to vary in accordance
with the prescrlbed aws 11.19):

Zp; (t) = rp; (t) (t>t) (i=1,...,m)

To solve the system of equations (2.17) one can, as in the preceding
section, use numerical methods. To this end let us divide the time in-
terval (j,r, r) into small intervals (jyr, j,r), (,r, jor) Gy, iy,

. and look for g ‘;:(t) in the form of step functions having constant
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values in these intervals. Let us denote these values by qs (0), q, (¢ 1),
(t ), qs (t;), respectively. Here 2

t, = JiT, ty = J,1, t3 = J5T, ... (2.19)
In doing so we obtain from (2.17) the following system of recurrence
relationships:

m g

3 (2 Wai (1, 19)]4,,(0) = By (1) (=t...m (220
p=1 j=1
m _q1 ] m s '
3 [ SWoi (tar 9]0, O+ N[ 3 Wi, (ta, 794, (82) = Ry (t2)
=1 _j_ u=1 j=jr+1 (l = 1! S rm)
m i jx
3 [SWou, (ts i9)]4,, ©) + z [ 3 W s, 7o, (22) +
=1 j=1 u=1 j=jH1
2[ Z Wpl’l-l ts’ ]T)]q (tz)— p’L( 3) (i=1,. ":m)
w=1j=js+1

From (2.20) we determine the numbers

2,0, ¢, (h)g, (8),... @=1....m)

Then the number of additional external forces is less than the number
of coordinates, the variation of which with respect to time must be in
accordance with the prescribed law, the relationships (2.17), as in the
continuous system, can be satisfied only at discrete instants t = T T
TB’ .«., which for the sake of simplicity, will be taken as some multlples
of r:

T, =¥, Ty = By, Tyg=3,... (2.21)

In the presence of only one additional external force q, (¢), the
relatlonshlps (2.17) at t = T, assume the form:

ZWpi, (Ty, J7)q,(jt—1) = Ry, (T1) (i=1,...,m) (2.22)
j=1
Let us divide the interval (0, T,) into m equal or unequal sub-inter-
vals (0, ]1T) Gars Jor)y Gor, _]37') .. (]. 7+ T,) and, assuming
that g _(t) is a step funcuon, let us denote its values in these intervals

by q,(0), ¢ .(¢,), q,(t,_,), respectively. Furthermore, let us use
the notation
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Js Js
MWos (T, ;)= 3 Woa(Ty, Jo) =, ...

j=1 Je=ir1

84
v S WMy jo) =m0 =1, m) (2.23)

J=ime g1

The relationships (2.22) assume the form:
g (0) +eq, (8 + ... +elm Vg, (tmay) = Rp (T1) (i=1,....m) (2.24)

The values of ¢ _(0), ¢ _(¢t,), ..., q (¢ _,), defining the law of
variation of additional external force qsrt) in the interval (0, T,),
will be found from (2.24). Continuing this process, as in (1.29)-(1.34),
we can determine the law of variation of the additional external force

q_(t) in intervals (Ti' T,), (Tz, TB)’ etc. Thus, the fulfilment of the
conditions (1.19)
zPi(t')zrpi(t‘) i=1...,m)

is assured at discrete instant t = Tl' Tz, T3,

In relationships (2.20)-(2.23) the functions W, (¢, jr), for fixed
value of time ¢t = ts, are assumed to be known. To determine the functions
,,(t, jr) in accordance with (2.15), one must know the functions Nvf (tg,
jr) which are elements of the matrix weighting function (2.10) at ¢t = tee

As is shown in [ 10] :
Ny (te, J7) = Zg (tg — ¥t + j) (2.25)

where is the integral part of tc/r and Z g are solutions of a conjugate
system of difference equations

k
Zg(t)—}-zakgzk(t—i—‘t)zo E=1....n (2.26)
k=1

constructed for the system of difference equations (2.3) and satisfying
the following conditions in the interval ,r < t< ( t /r

Z)(t)y=1, Zx(t)=0 (k=1,2,....v—4, v+1,...,7) (2.27)

Thus, to make possible the determination of the functions W ,(¢y, jr),
it is necessary to find the solution of the system of homogeneous giffe-
rence equations (2.26), subject to conditions (2.27).

From this follows also the method of solution of the problem considered
here for impulsive systems by means of electronic computers.
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