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The theory of optimum processes in linear systems has been rigorously 
developed in recent years in the works of Pontriagin, Poltianskii and 
Gamkrel idze [ 1, 2. 31 . 

These studies were preceded by the work of Fel’dbaum [ 41, Lerner ! 5, 
6] and others. Considerable contribution to this field was made by Bell- 
man [ 7.8.91, the author of a fundamental paper on dynamic programming 

f9f. 

In this paper, one of the problems of the theory of dynamic programm- 
ing is considered, namely, the problem of choosing the law of variation 
of the additional external forces by means of which one can ensure resl- 
ization of prescribed motion in a linear nonstationary system. This 

problem is considered for both continuous and impulsive systems. 

3. Busic continuous systems. The equations of motion of a con- 
tinuous system can he represented as follows: 

i fj,(')y*=sj(t)+qj(t) 

&=I 
(j = i, . l . I fif (1.1) 

Here yk are generalized coordinates, 

qj(t) are additional external forces 
xi f t 1 are given external forces, 

for which the law of variation with 
respect to tims must be chosen such that the prescribed motion will take 

place; fjr(Df denote polynomials in D the coefficients of which are given 

functions of time; D = d/dt is the differential operator with respect to 
time, 

ft is not difficult to see that the equations of motion (1.11 also 
apply to sysuems with the presence of cormuonly used control forces which 

are error fnnctions (i.e. the difference between the desired and the actual 

values of the controlled coordinates of a system) and their derivatives. 

943 
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The external forces necessary for this are included in the number of the 

given external forces z ft ), .while the forces which should be functions 

of controlled coordinatk and their derivatives are taken into account in 

the left-hand side of equations (1.1). 

The system of equations (1.1) may be presented as follows: 

bjr (t) yi + bjs (t) yi + - * l + bjn (t) in” = 
m,-1 

=yj(m~Y1v~~~~Y1~~~~9 Yn 7..-vgn)+zj(t)+gj(t) 

(1.2) 
(i=l, . . . , n) 

Here mk(k = 1, . . . , n) denote the order of the highest derivative of 

yk with respect to time occurring in (1.1). The functions Yj entering 

(1.2) are linear functions of their arguments. 

Assuming that the determinant 

A’ = ( bjk (t) 1 

is not identically equal to zero we obtain from equations (1.2) 

(1.3) 

%- 1 

,YI,‘.., Yn --- 9 Yn + 1 

1 .4 

+ ;$$+I (t) + q1 (t)] + . . .+ * 1% (t) + Qn (t)1 (i = i, . . . , n) 

Here a. are the linear functions of their arguments and Bii are the 

cofactors’of the. elements b, j in the determinant (1.3). 

The system of equations (1.4) can be reduced to the Cauchy form. To 

this end let us introduce a new variable zi by means of the following 

relationships 

. ml-l m,--1 

z1 = y,, zq = y1, . . . ) Zm,= y1 ,- -a rG= y, (1.5) 

where 
r = ml f m2 f . . . + m, (1.6) 

Let us denote linear combinations of external forces in the right-hand 

sides of equations (1.4) as follows: 

Xoj(t) = K x1 (tj -/- . . . + 
Bnj (t) 
ppn(t) 

(oj=al,...,on) (1.7) 

where 
31 = ml, ~2=m,+m,, . . . ,u,=r (I.81 

Epuations (1.4) can now be written as follows: 
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By virtue of linearity of the functions aj(zl, z2, . . . . zr), equations 
(1.9) can le represented in the following form 

Hj + i Ujk (t) Zk = Xj tt> + Qj (tl (i= 1 ) . . . , r; (1.10) 
k=l 

In equations (1.10) the functions Xpct) and Qp(t) with p fi 01 (1 = 1, 
.**, n) are identically equal to zero. 

The system of scalar equations (I.101 is equivalent to a matrix ecpa- 
tion 

. 
‘” 

Y + a(t)z = X (t) + Q.(t) (1.11) 

where z, aft), X(t) and Qrt) are the following matrices: 

z = ilzjjl, Q (4 = Ibjk (t) IL ml =IImt)lj, Q(t) = IlQj tt)ll. (1.12) 

'l'he general solution of equation (1.11) is of the form: 

where 
N (L 7) = 8 (t) 6-l (7) (2.14) 

and 8(t) is the fundamental matrix for the homogeneous matrix equation 
obtained from (1.11) when X(t) + Q(t) E 0. 6-l(t) denotes the inverse 

matrix. 

The function Mt, z) is the matrix weighting function for the system 
(1.10). 

Since the functions X ft) and Q (t) are identically equal to zero for 
p f UI 0 = 1, .'., R), the elenmnk of the z-matrix will be 

tn 
(1.15) 

zj(t)=eNjk(t,I,)zk(t,)+S~Nj.t(t,r)[X.,(r)+p,i(~)]dT. (i=1,-.-,r) 

k-1 t. i=1 

Substituting expressions (1.7) defining Xoi(t) and si(t) into (1.15) 
we obtain 

zj (t) = i Njk(t, &)Zk (to) f- 

k=l 

(1.16) 
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let US represent the general solution of (1.10) in the following form 

(1.18) 

Let us now require that some generalized coordinates zpLS . . . . zpR, 
after some instant of time ti, should vary in accordance with the 

following laws: 

It follows from (1.18) that conditions r1.19) will be satisfied if 

the additional forces ql(t) are chosen such that for t > tl the following 

relationships hold: 

'lhe relationships (1.20) define the law, in accordance with which the 

additional forces g,(t) (1 = 1, . . . . n> must vary. If the number of the 
generalized coordinates m (the law of variation of which is prescribed) 

is less than the number of possible additional forces n, we shall take 

Qbl (t) = q*, (t) = . 0 . = qo,_m (t) = 0 (l.Z.Z> 

From (1.20) we have m relationships for determining A additional ex- 

ternal forces qS1(t), qS2(t), . . . . iQ1: 

i S~~,.,(t,~)%,(~)dr=Rpi(l) (t>tr) (i=i,...,m) (1.23) 

fr-It. 
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The system of integral equations (1.23) can be solved by means of a 

nunerical method. To this end let us divide the time interval (t,, t) 

into small intervals (t,, t2), (t,, t3 1, (tg, t4), . . . . and look for 

q$t) (/I = 1, . . . . m) in the form of step functions, having constant 

values in each of the above intervals. 

In doing so we shall obtain (from 1.23) the following system of re- 

currence equations : 

(i=l,...,m) 

(i = 1,. . .,m) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

From (1.24) we can find in succession the following quantities: 

478, WI), Qs, (tr) 9 Qs, (tzh **a (p = I,. . ., m) 

which are the values of the desired step functions q sP(t) (p = 1, . . . . m) 

during time intervals (t,, t,), (tI, t,), (t,, t,), . . . , respectively. 

Let us now consider a case when the number of additional external 

forces is less than the nunber of the generalized coordinates which must 

vary with respect to time in accordance with the prescribed law. 

The relationships (1.23) for this case will be satisfied only at dis- 

crete instants of time t = Tl, T2, T3, . . . . For stationary systems this 
was shown by Lerner 161. 

‘lhs, if there is only one additional force q,(t) and the conditions 
(1.19) still must be satisfied, the relationships (1.23) at instant 
t = Tl will assume the form: 
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Let us divide the interval (t,, TI) into ffl equal or unequal sub- 

intervals (t,, t,), (t,, t,), (t,, t3), . . . . (t 1, T). Let us assume 
that qs(t) is a step function and denote its va!is in these intervals 

by q,(t,,), q,(tr), . . . , 4$,- 1)’ respectively. 

Let us introduce the following notations: 

1, t* T1 

s 
Wpis (2’1, T) dr - ci(O), 

s 
Wpis (2’1, T) d7 = ci(l), . . . , 

s 
Wpia (T,, T) d7 = ci(m-1) 

4’ 11 bT+1 

(i = I, . . ., m) (1.26) 

Now relationships (1.25) assume the form: 

ci(O)q8 (to) + ci(l)Q8 (tr) + . . . + ci(m-l)qs (tm-1) = Rpi (7’1) (i = I,. . ., m) (1.27) 

From the system of linear nonhomogenious algebraic equations (1.27) 

we find the values of q,(tO), qs(t,), . . . . q,(tm_ 1), i.e. we find the 
law of variation of additional external forces which assures that at 

instant t = Tl the following conditions will be satisfied 

‘Pi CT,) = rPi tTl) (i=l,...,m) (1.28) 

At t = T2 the relationships (1.23) will assume the form: 

Q-1 

s Wpis (T,, T) qs (~1 df = R,, (T,) (i = 1,. . ., m) (1.29) 

or t, 

(i = 1,. . .,m) (1.30) 

where 

11~~(‘,)=R,I(‘,)-i’W,i*(T,,i)q.(r)dr 
1. 

The interval T,, T7 will be also divided into 

(i= 1,. . .,m) (1.31) 

m equal of unequal sub- 

intervals (t,,, ta; r); (t,,+ 1, t,, *I, . . . . it2m_1, T21, where 

t,,, = T, (1.32) 

(t 

‘lhe values of the step function q,( t ) in the intervals (t,, t,+ 1), 

R+Y t,+& ***, (tg,_p 
. . . . q&t ), 

T,) will be denoted by q,(t,), q,(t,+ 1), 

2r- 1 respectively. Let us use the analogous notation 
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‘m,+1 tm+a 

I 
Wp,,(T,, t)& = c&m), 

s 
W,,(T,, T)dT = f.$m+q . . . 

tm tm+l 
TI 

‘he relationships 61.30) will become: 
(1.34) 

~ifm’~s (tm) + cifm+l)qe (tm+l) + I . . + c.J’~-‘~‘Q~ (tzm-1) = Rpi* (2’3) ii = 1, . . ., m) 

From the system of equations (1.34) we find the values of qs(t,)s 

‘1 (t L q (t 1, i.e. we find the law of variation of the 

ajdit"zfoAal kkk& ?&A in the interval (T T 1, which assures that 

at instant T2 the following conditions are iktiified 

zpi Vd = rpi EJ (i = 1,. * .* m) (1.3s) 

'Ihis process may be continued, and thus to assure that in the presence 
of only one additional force q,(t) the m conditions of (1.19) will *be 
satisfied at instants t+ = TI, Tz, Tj, .,.: 

‘Pi tt*> = rpi (I’) (i = 1, . . ., m) 

Let us note that the values of q,(tj), generally speaking, will in- 
crease as the length of the time intervals Ti - T. r-l is decreased. 

For fixed values of Ti - at which conditions (1.19) must be satisfied - 

a problem may be given in terms of some extremum properties of motion 

such as minimum root-mean-square deviation r .(t) - z .(t), or others. 

Ihese problems will1 reduce to the problem ofPGonditio% extremum of 

corresponding functionals, which may be determined from (1.23). 

Let us make also the following observation. In equations (1.241, (1.251, 

and (1.291, the functions Wjl[t, r), for fixed value of time. t = 
V* 

are 

assumed to be known, As is seen from (1.171, in order to determine the 

functions W ir (t c3 7 1 one must know the functions N&t 

6 

, 71, which are 

elements of the matrix weighting function Ntt, r) at t e same instant 

t = tr. As is known, 

where Z$7) are 

constructed for the system of equations (1.10) and which at r = 5 
5 

ussw 

solutions of the conjugate system of equations 

fg- &&~~(i)~+.3 g= 1,. . .,r) (1.37) 
k--l 
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the following values: 

4 (Q = I, Zk (tc) = 0 (k = 1,2, . ..,j-I, j+l,..., r) (1.38) 

‘Ihus, to make possible the determination of the functions W. (tl, r ), 
it is necessary to solve the conjugate system of equations (1.53)) sub- 
ject to the conditions (1.38). From this follows the method of determina- 
tion of additional external forces q,(t) by means of electronic computers. 

2. Impulsive systems. For this case, equations of motion of a non- 
stationary impulsive system will be represented by a system of linear 

difference equations 

i fjk (T) Yk = “j(t) + qj (t) (i=i,...,n) (2.1) 
k-l 

where T is the lead operator defined by the following relationship 

T’Yk = yk (t + fi) (2.2) 
and r is some constant. 

Equations 2.1) may be obtained from (1.1) by replacing the diffe- 

rential operator D by the lead operator T. Having carried out the trans- 
formations in (1.2) to (1.9), we shall reduce the system of equations 
(2.1) to the form 

Tzj -I- i ajk (t) zk = Xj (t) $_ Qj (t) 
k--l 

(j = 1,. . ., r) 0.3) 

where, analogously to (1.5), 

z1 = y,, z, = Ty,, . . . , z,,,, = T”‘l--lyl, . . ., z, = T”‘+y, (2.4) 

and the functions Xi(t) and Qj(t) are defined by the expressions (1.7) 

and (1.8). 

‘Ihe system of scalar equations (2.3) is equivalent to the matrix 

equation 

Tz + a(t) z = X (4 + Q(t) (2.5) 

where the matrices z, a(t), X(t), and Q(t) are defined in (1.12). Solution 

of the equation (2.5) is of the form: 

2 (t) = 9 (t) e-1 (t - 37) z* (t - 3T) + 

+ i e(t)e-~(t-a9r+jT)[~(~-a7$j~--)+Q(t-~++T-~)] (2.6) 
j-1 

where O(t) is a square matrix, the colunms of which are linearly inde- 
pendent solutions of the following homogeneous matrix equation 
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Tz+a(t)z=O (2.7) 

'l'he matrix e-'(t) is the inverse matrix of 0(t) and denotes the 

integral part of t/r. 

In the expression (2.6) the second 

0 < t < r so that, according to (2.6) 

z(t) = z'(t) 

where z*(t) is a given matrix defined 

law of variation of the sought matrix 

term becomes zero in the interval 

(0 <t <T) (24 

in the interval 0 < t < I by the 

z(t) in this (initial) time interval. 

In accordance with (2.61, the elements of the matrix z(t) will be of the 

form: 
r 

& (t) = 2 10 (t) fJ-’ (t - h)]“k Zk*(t - 3-T) + (2.9) 
k-l 
r a 

+ Fl zl [e (t) 0-l (t - 87 + jT)]vk [xk (t - 8-C + i7 - ‘) + 

+ Qk (t - 87 + i7 - 7)1 (v=l,...,r) 

Denoting the matrix weighting function by N(t, jr) 

N (t, iq = e (t) e-1 (t - k + jT) (2.10) 

the solution (2.6) can be written as follows 

z(t) = N(t, O)z'(t - 3T) + 

+ i N(t,j~)[X(t--+~~--)+Q(t--9r+j?--)l (2.11) 

j-1 

'Ihe expressions (2.9) will now assume the fon: 

Z&(t)= jj &(t,o)$(t--)+ (2.12) 

k-1 
B 

+ kil jzlNvk (t, i7) [xk (t - 8’Z + i7 -7) + Qk (t --7 + i7 - 7)1 (+ = 1,. . ., r) 

Since the functions Z(t) and Qp(t) with p f al(l = 1, . . . . n) are 

identically equal to zero, the expressions (2.12) may be rewritten as 

follows: 

+ 2 2 xe, (t , I.71 rxYi (t - 87 + j7 -- 7) + QOi (t - 87 + j7 - 7)] (2.13) 
i=l j=l (v = 1, . . . ) r) 
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Replacing Xoi and C& in accordance with (1.7), let us reduce (2.13) 
to the following: 

i 

Z&(t) = i Nuk(t, O)Zk*(t -92) + (2.14) 

k=l 

-i-q1 0 -ar+jz--r)] 
(v=l,...,r) 

(2. 3) 

the expressions (2.14) may be represented in the form: 

z"(t)= &%k(t, o)z;(t--)+ 

+i fiJW,, (1, jT)h(t--J+T+jz---)+ ql(t--9r+jT--r)] (v*= 1, . . . . r) 

I=1 j=1 

To satisfy the conditions (1.19) we shall have the following relation- 
ships, analogous to (1.23): 

i ~W,isp(t,j~)qsw(t-Zk+ jr--)=Elpli(t) (t>td fi=%...,m), (2.47) 

f-1 j=l 

where . 

&(t) = rpi(t)- r, $$c(t, 0) Zk*(t -*) - (2.18) 

k=l 

- $ $Wpil(t, j2)22(t -8~ + jT--T) (j=l,...,m) 

I=1 j==l 

Relationships (2.17) define the law, in accordance with which addi- 

tional external forces q, (t) (p = 1, . . . , m) must vary in order for some 

generalized coordinates Pof the system z .(i = 1, . . . . n) after some in- 
stant of time t = j r (t is some multlp e of r) to vary in accordance 
with the prescribed !aws 11.19): 

- f’ 

‘Pi ft) = rPg (t) (t > t1) (i = 1,. . . , m) 

To solve the system of equations (2.17) one can, as in the preceding 
section, use numerical methods. To this end let us divide the time in- 
terval (jlr , f) into small intervals tjIr, j,r), (j2fS j3r) (j3r, itit), 
.** and look for q 

"P 
(t) in the form of step functions having constant 
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values in these intervals. Let us denote these values by q,,(O), qsp(ti), 

q,p,L q&A respectively. Here 

In doing so 

relationships: 

t, = jl? 42 = j27., t3 = j37, . . . (2.19) 

we obtain from (2.17) the following system of recurrence 

2 12 wPi8p ttlt ir)J Qsw (‘1 = RPi Ctl) 
v-1 j=l 

(i = 1,. . . , m) (2.20) 

; [&&JtBI i7Yj%,(O) + 5 [ i KpJt2, i7&p =qJ&) 

v.=l j=l w=l j=j,+l (i = I,...,m) 

jj [iwPi8p ftSy i7)]4,r(o) + 5 [ fj wPiSg tt3, i7)1q,K(tl)+ 

cc=1 j=l Ir=1 j=j,+1 

+ fi)[ i wPi"v tt3Y i7)]Q*r(t2) = RPi(t3) (i = i,...,m) 

cc=1j=j,+1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

From (2.20) we determine the numbers 

Then the number of additional external forces is less than the number 

of coordinates, the variation of which with respect to time must be in 

accordance with the prescribed law, the relationships (2.17), as in the 

continuous system, can be satisfied only at discrete instants t = Tl, T2, 
T 3’ . ..) which for the sake of simplicity, will be taken as some multiples 
of 1: 

T, = &7, T, = i&7, T, = 8,7, . . . (2.21) 

In the presence of only one additional external force q,(t), the 

relationships (2.17) at t = Ti assume the form: 

iw,,(Tl, iT)q, (i'-7) = Rri (Tl) (i = 1,...,m) (2.22) 

j-l 

Let us divide the interval (0, Tl> into m equal or unequal sub-inter- 
vals (0, jlr), (jlf, jzr), (j,r, j3r), . ..) 

that q (t) is a step function, 
(j,_ 1r9 Tl) and, assuming 

by q (6)s q (t,), 

let us denote its values in these intervals 

the iotatioi 

. . . . C&_$' respectively. Furthermore, let us use 
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i wpis (T,, j.7) = Q(O), i wpis (T,, jT> = CP), . . . 
j=l j=j,+1 

8, 

. . . , 2 WPi’ (T,, jT) = ci(+-l) (i = 1, . . *, n) (2.23) 
j=&+.+ 

'Ihe relationships (2.22) assume the form: 

Cifo) Q, (0) + Ci(‘) Q (1 (tl) + . e . + c$m--rf q, (tm__1) = R,, (T,) (i = 1, . , ., m) (2.24) 

The values of q (O), q (t,), 

variation of additional elternal 

), defining the law of 

will be found from (2.24). 

in the interval (0, T,), 
as in (1.29)-(1.341, 

we can determine the law of variation of the additional external force 

q,(t) in intervals fTl, T2>, (T2, T3>, etc. Thus, the fulfilment of the 

conditions (1.19) 

‘Pi tt’) = rP* tt*) (i=l,...,m) 

is assured at discrete instant t = Tit T2, T3, . . . 

In relationships (2.20)-(2.23) the functions !Y,,(t, jr), for fixed 

value of time t = t 
d 

, are assumed to be known. To determine the functions 
Wvr(t, jr) in actor ante with (2.151, one must know the functions N t&Q 
jr) which are elements of the matrix weighting function (2.10) at t = tc. 

As is shown in [lo] : 

lV”L (tr, l.7) = 2s (tr - a,r + iT) (2.25) 

where 5 is the integral part of t&r and 24 are solutions of a conjugate 

system of difference equations 

k 

25 (t) + 2 akE Zk (t + z) = 0 (4 = I, . . . , r) (2.26) 

constructed for the system of difference equations (2.3) and satisfying 

the following conditions in the interval 5“ < t < ( 5 + 1)/r 

Z,'(t)= 1, z,(t) = 0 (k--1, 2,...,v--1,v+i,...,r) (2.27) 

Thus, to make possible the determination of the functions Wvl(t , jr), 

it is necessary to find the solution of the system of homogeneous CI iffe- 

rence equations (2.26), subject to conditions (2.27). 

From this follows also the method of solution of the problem considered 

here for impulsive systems by means of electronic computers. 
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